![](https://dam.malvernpanalytical.com/2a4841c3-3218-41cb-a49a-ada400dc8e6e/637375900710142760TV_Original%20file.jpg?quality=60&width=393&crop=2:1,smart)
![](https://dam.malvernpanalytical.com/2a4841c3-3218-41cb-a49a-ada400dc8e6e/637375900710142760TV_Original%20file.jpg?quality=60&width=393&crop=2:1,smart)
用于批量和薄膜电子元件制造的计量解决方案
材料研究和半导体技术的进步给我们的生活方式带来了巨大的变化。我们日常生活中的手机、智能可穿戴设备和玩具、笔记本电脑、无线网络、家庭信息娱乐系统、汽车和智能仪表等等方方面面的发展几乎都离不开材料研究与半导体技术的推动。
电子显示器、数据存储和射频滤波器技术行业发展迅速,其发展速度遵循摩尔定律。目前的生长工艺能实现多层结构沉积,各层的薄膜厚度可以从微米级别低至单分子层级别。
高级薄膜器件所涉及的典型材料包括半导体、金属合金、介电材料、氧化物和聚合物。这要求运用多种研究技术来精确监测和控制器件参数。对工艺材料(如化学机械抛光(CMP)浆料)进行精细控制也至关重要,是薄膜器件制造过程中必不可少的部分。
薄膜器件的制造通常使用了复杂的多步骤制造工艺。X 射线荧光 (XRF) 和 X 射线衍射 (XRD) 是此类制造过程不可或缺的部分,可在每个步骤监测和控制关键薄膜参数。电子显示器采用了各种技术,如液晶、颜料分散、量子点和有机发光二极管(OLED)。颗粒的粒度和形状在绝大部分技术的运用中起着重要作用,需要进行可靠的表征。 比如在OLED中,严格控制聚合物特性(如粒度和分子量)对于显示质量至关重要。
马尔文帕纳科与电子行业紧密合作,在行业整个价值链中提供广泛的解决方案: